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We study the evolution of three- and four-particle diffusion at large Reynolds numbers using kinematic
simulation �KS� in isotropic turbulent flows. We vary the Reynolds number and find that the geometrical
characteristics of triangles and tetrahedrons as functions of time do not depend on the Reynolds number but
only on the ratio �0 /L1 that is on the portion of the inertial range that was contained within the triangle or
tetrahedron at the initial time. We also study the effect of the modeling of the unsteadiness term in the KS.
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I. INTRODUCTION

Turbulent mixing has a wide range of applications from
the prediction of combustion in stroke engine to that of dis-
persion of pollutants in geophysical flows. It is also of fun-
damental importance for the study of turbulence. Batchelor
�1� addressed the link between the statistics of the fluid mo-
tion and that of the passive scalar transport in turbulent
flows. The statistical properties of scalar fluctuations have
many similarities with the statistics of the turbulent velocity
itself �2�. The traditional study of the correlation at two
points is not sufficient to relate the scaling and the spatial
structures of the flow field. Mydlarski �3� stressed the impor-
tance of the Lagrangian evolution of n particles in the study
of the structure function of order n which is considered as a
way to connect the scaling properties of a turbulent field and
the spatial structure of the flow.

One- and two-particle studies involve simple statistics:
the mean square displacement in the case of one-particle dif-
fusion and the mean square separation between the two par-
ticles in the case of two-particle diffusion, whereas the mul-
tiparticle evolution exhibits nontrivial statistical conservation
laws that involve geometry and power law for the increase of
particles’ separation. The distance growth is balanced by the
decrease of shape fluctuation �4�. The existence of multipar-
ticle conservation laws indicates the existence of long time
memory effects and is a reflection of the coupling among the
particles due to their presence in the same flow.

The statistics of the geometry of Lagrangian trajectories
of three- and four-particle objects was investigated in three-
dimensional turbulent flows using direct numerical simula-
tion �DNS� �5� at a moderate Reynolds number �R�=82�
which corresponds to a ratio of inertial scales kN /k1=185.
The DNS demonstrated that initially regular clusters of
points whose sizes lie in the dissipation range are strongly
distorted, while clusters whose sizes are comparable to the
integral length scale relax towards a uniform shape distribu-
tion. Because of the Reynolds number limitations when us-

ing DNS, Pumir et al. �5� used a phenomenological model of
Lagrangian kinematics �6� which describes the combined ac-
tion of coherent and incoherent random strains. The phenom-
enological model allowed them to qualitatively extrapolate
the DNS results to larger Reynolds number regimes.

Castiglione and Pumir �7� studied the evolution of a three-
particle swarm by tracking three points in an experimental
turbulent two-dimensional flow with an inverse energy cas-
cade regime with a k−5/3 spectrum. The distribution of the
triangle’s shape was found to depend on its size. When the
triangle size R is in the inertial range and grows according to
t3/2, a self-similar, non-Gaussian probability distribution is
observed. When the triangle size is larger than the integral
length scale, the shape distribution is Gaussian. But here
again the experiment was done for a very small Reynolds
number kN /k1=3.76 and the results obtained, discussed, and
compared with the prediction of the phenomenological
model introduced in Ref. �5�.

In this paper we propose to use kinematic simulation �KS�
to extend the previous results to larger Reynolds numbers.
KS is a Lagrangian model of turbulent diffusion that is de-
scribed in Sec. III. It is a model and needs first to be assessed
against present data. This is done in Sec. IV A for three
particles and in Sec. V A for four particles.

KS results already agree with the experimental results
concerning two-particle statistics �8�, concentration variance
�9�, and with DNS of two-particle dispersion �10�. KS is
simple and less time consuming than a DNS or a large Eddy
simulation �LES�, and large Reynolds numbers can be
achieved. It can therefore be used to test many cases to study
the effect of the Reynolds number and the initial separation
on the statistics of the dispersion of n particles. It has been
successfully validated on the prediction of the fractal dimen-
sion of a line which is indeed a n-particle problem �11�.

Khan et al. �12� also used KS to study the evolution of
triangles in two-dimensional turbulent flows. They used KS
to reproduce the experiment in Ref. �7� and studied the effect
of high inertial ranges kN /k1=1, 691, 3381, and 16 909. They
concluded that as the Reynolds number is increased the vari-
ables describing the geometry, �I2�, �w�, and ���, become
weaker functions of both the triangle’s initial size and time.*Electronic address: F.Nicolleau@Sheffield.ac.uk
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The values of these variables were always found signifi-
cantly different from the Gaussian values.

In this paper, we study the effect of the Reynolds number,
initial size, and unsteadiness term modeling in three-
dimensional flows for triangles in Sec. IV and for tetrahedron
in Sec. V. Conclusions are summarized in Sec. VI.

II. MULTIPARTICLE PARAMETRIZATION

In this section we introduce the parameters used to evalu-
ate the dispersion of three and four particles.

A. Three-particle parametrization

We start with three particles located at Xi �i=1,3�, as
shown in Fig. 1. The initial positions of the particles are
chosen randomly in each realization such that the initial
separation between any two particles is set to a given value
�0. To enhance randomness in the different realizations, the
cube shown in Fig. 1 is rotated by a random angle for each
realization.

To describe the evolution of the size and shape of the
three-particle cluster corresponding to the points X1, X2, and
X3 we use the parametrizations introduced in Refs. �6,13� for
our analysis.

The two reduced vectors �i, independent of the center of
mass variable �0 are defined as follows:

�1 =
X2 − X1

�2
, �2 =

2X3 − X1 − X2

�6
. �1�

The radius of gyration is then defined as

R2 = �1
2 + �2

2 =
r12

2 + r23
2 + r31

2

3
, �2�

where the rij = �X j −Xi� are the length of the triangle sides. It
is used to define the characteristic size of the triangle. The
area of the triangle is defined as

A = ��1 � �2� . �3�

In order to characterize the shape of the triangle, Pumir et al.
�5� introduce a “moment of inertia-like” tensor gab as fol-
lows:

gab = 	
i=1

2

�i
a�i

b, �4�

where �i
a is the a component of the vector �i. This tensor has

three eigenvalues g1, g2, and g3 that describe the spatial ex-

tension of the triangle �X1, X2, X3� in the three-dimensional
turbulence. The triangle continuously experiences dilatation,
rotation, and translation during its evolution in the turbulent
flow, so its size and shape are varying continuously. One
method to quantify the shape of the triangle is to monitor the
quantity I2 which is defined as the ratio between g2 the
smallest eigenvalue and R2,

I2 =
g2

R2 . �5�

I2 varies between 0 and 1/2, an equilateral triangle corre-
sponds to a value of I2=1/2, smaller values of I2 correspond
to more elongated triangles.

Another method to describe the shape of the triangle is to
use the parameters w and � �7� which are defined as

w = 2
��1 � �2�

R2 �6�

so that w� �0,1�, and

� =
1

2
arctan
 2�1 · �2

�2
2 − �1

2� . �7�

Because of the global invariance of the triangles under any
relabeling of the three vertices, it can be shown that �
� �0,� /6� �13�. The ratio I2 defined previously is related to
w as follows:

I2 = �1 − �1 − w2�/2. �8�

The value w=0 indicates that the three points are aligned,
whereas the value w=1 corresponds to an equilateral tri-
angle. Small values of � indicate that the separation between
any two particles �e.g., 1 and 2� is much smaller than their
separation with the third one. �See Fig. 3 in Ref. �14�.�

B. Four-particle parametrization

The initial position of the four-particle cluster corresponds
to the points X1, X2, X3 and X4 as shown in Fig. 2. For a
four-particle cluster in addition to �1 and �2 we have to de-
fine �3 as follows:

�3 =
3X4 − X1 − X2 − X3

�12
. �9�

The radius of gyration which is defined as R2=	i=1
3 �i

2 is used
to measure the size of the four-particle cluster. To character-

FIG. 1. Initial positions of a cluster of three particles. FIG. 2. The initial positions of a cluster of four particles
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ize the shape of the object Pumir et al. �5� generalized the
“moment of inertia-like” tensor to

gab = 	
i=1

3

�i
a�i

b. �10�

The eigenvalues of this tensor gi �i=1,2 ,3 ,4� provide a way
of quantifying the shape of the set of points. g1=g2=g3 cor-
responds to an isotropic object. The case g1�g2�g3 corre-
sponds to a pancakelike object and g1�g2, g3 to a needlelike
object.

The dimensionless parameter I2, defined by I2=g2 /R2, is
used to describe the overall shape of the tetrahedron. The
volume of the tetrahedron defined as

V = �det��1,�2,�3�� �11�

can also be used to characterize the evolution with time.

III. KINEMATIC SIMULATION

A. Introduction to kinematic simulation

The n-particle dispersion is modeled using kinematic
simulation �KS�. Kinematic simulation is now a well-
established Lagrangian model. In contrast to classical sto-
chastic models, it is the Eulerian velocity field which is mod-
elled by kinematic simulation and it generates realistic
particle trajectories. In that sense a detail modeling of turbu-
lence features is not always necessary. Furthermore, from a
theoretical point of view it is paramount to understand what
is necessary and what is not for a correct geometrical de-
scription of the turbulence. The pseudo-Eulerian velocity
field, uKS�x , t�, is usually expressed as a finite and discrete
sum of Fourier modes �15�:

uKS�x,t� = 	
n,m

Anmekẋ+	t,

where x is the position of the fluid particle. In practice, ki-
nematic simulation then relies on the integration of

dx

dt
= uKS�x,t� , �12�

geometrical features and other constraints �incompressibility�
are introduced as constraints on the coefficients of the de-
composition Anm, and the energy spectrum is prescribed ac-
cording to the type of turbulence considered.

Many researches �9,10,16,17� suggest that from rather
crude information from the Eulerian velocity field, KSs re-
produce many relevant geometrical features of Lagrangian
turbulence that have significant qualitative and quantitative
implications on concentration fields. Comparisons of direct
numerical simulation results for two-particle statistics in sta-
tionary isotropic turbulence have shown good agreement
with KS �8–10,18�. It was found that KS models reproduce
well the global statistical properties of Lagrangian intermit-
tency at the Reynolds numbers attainable by DNS. In KS, as
in DNS and real turbulent flows, the non-Markovian geom-
etry of trajectories is determined by the eddying, straining,
and perhaps also other structures in individual Eulerian real-

izations. Such structures are not implemented in random
walks or Reynolds average Navier-Stokes equation �RANS�,
and their fine detail may not matter for some Lagrangian
statistics. However, the presence of these sort of structures is
pivotal and can explain various Lagrangian properties such
as aspects of two-particle dispersion, power spectra, etc.

As in Refs. �11,19� our three-dimensional �3D� KS veloc-
ity field is given as a sum of N random Fourier modes, i.e.,

u�x,t� = 	
n=1

N

�an � k̂n�cos�kn · x + 	nt�

+ �bn � k̂n�sin�kn · x + 	nt� .

k̂n defined as k̂n=kn / �kn� is a random unit vector. an and bn
are random and uncorrelated vectors with their amplitudes
being chosen according to a prescribed power law energy
spectrum E�k�, i.e.,

�an � k̂n�2 = �bn � k̂n�2 = 2E�kn��kn �13�

and


E�k� =
u0

2

k1
� k

k1
�−5/3

for k1 
 k 
 kN

E�k� = 0 otherwise
� . �14�

B. Kinematic simulation’s parameters

Typical turbulence parameters we define are the integral
length scale

L =
3�

4

�
k1

kN

E�k�k−1dk

�
k1

kN

E�k�dk

. �15�

We also introduce L1=2� /k1, the largest scale of the inertial
range, the turbulent velocity fluctuation intensity,

u� =�2

3
� E�k�dk ,

and the Kolmogorov length scale, defined here as

� =
2�

kN
,

the characteristic time associated to this scale is

�� =
L

u�
��

L
�2/3

.

The distribution of the wave number is geometric, i.e.,

kn = k1� kN

k1
��n−1�/�N−1�

. �16�

It is also possible to introduce a frequency 	n that determines
the unsteadiness associated with the nth wave mode. Here,
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the value of the unsteadiness coefficient � is defined by two
methods.

Method 1. We follow Malik and Vassilicos �10� who
chose 	n to be proportional to the eddy-turnover time of the
nth wave mode, i.e.,

	n = ��kn
3E�k� , �17�

where � is the unsteadiness parameter and may be expected
to be of the order of 1. It has been shown in 3D isotropic KS
�10� that for two-particle diffusion most statistical properties
are insensitive to the unsteadiness parameter’s value pro-
vided that it rests in the range 0
�
1. Nicolleau and El-
Maihy �11� also concluded that, in that range of values, � has
no effect on the fractal dimension of a cloud of fluid par-
ticles.

Method 2. For the sake of completeness we also use a
second method were 	n is chosen as a random variable uni-
formly distributed in the range

	n � �− ��kn
3E�k�,��kn

3E�k�� . �18�

For the sake of simplicity we set the initial time when the
particles are released to 0.

C. Initial positions

The initial position of the first particle is chosen randomly
in each realization, then the initial positions of the other par-
ticles are calculated relative to the first particle such that the
initial separation between any two particles is set to �0
=q� where q=1/4, 1, 4, 16, 32, and 64 as shown in Fig. 1
for three particles and Fig. 2 for four particles.

We follow the evolution with time of the n-particle object,
which is initially isotropic, by solving Eq. �12� for each par-
ticle using the fourth order predictor corrector method
�Adams-Bashforth-Moulton� in which Runge Kutta 4 is used
to compute the first three points in Adams-Bashforth method.
Other schemes have been investigated for sake of compari-
son, the Adams-Bashforth-Moulton scheme gave the best
performance in terms of error growth, stability, and comput-
ing time. The parameters V, I2, w, and � are calculated at
each time step and then averaged over 4000 realizations.

The computation is made first for small Reynolds num-
bers to allow us to compare our results with the results ob-
tained experimentally in Ref. �7� and using DNS in Ref. �5�.

Then the evolution of three and four particles is made for
larger Reynolds numbers to study the effect of different in-
ertial subranges. The value of the unsteadiness coefficient �
defined by methods 1 and 2 is varied to study the effect of
the unsteadiness parameter on three- and four-particle diffu-
sion. Table I shows the different simulation parameters used
to predict three- and four-particle diffusion.

IV. THREE-PARTICLE RESULTS

We are interested in the evolution of the size and geom-
etry of an initially equilateral triangle. The evolution of the
triangle’s size is obtained by computing the evolution of
�R2�1/2 as a function of time for different initial sizes �0. The

alteration of the triangle’s shape can be observed by comput-
ing the evolution of �I2�, �w�, and ��� as functions of time.

A. Validation

The computations are first made for a small inertial sub-
range �kN /k1=185� to allow the validation of our results
against the DNS results of Ref. �5� and the experimental
work of Ref. �7�, then another set of computations is made
for kN /k1=2000 to study the effect of large Reynolds num-
bers on the diffusion of three-particle clusters.

Figure 3 shows the evolution of the triangle’s average size
�R2�1/2 as a function of time for different initial sizes, namely
�0=0.25�, �, 4�, 16�, 32�, 64�, and 92.5�. The slope 3/2
corresponds to the estimation of the Richardson regime,
whereas the slope 1/2 indicates the large time random walk
regime. As expected from definition �2�, the figure shows the
same characteristic regimes as for two-particle separation, in
particular there is no clear Richardson regime in this type of
representation except for �0�� �see Ref. �19� for a discus-
sion on the nature of the Richardson regime�.

Because of the finite size of the experiment cell, the in-
crease of the radius of gyration saturates to a certain value in
an experiment �7�, whereas, in our three-dimensional KS,
�R2� increases with t up to very long times �tu� /L
10� as

TABLE I. Different simulation parameters used to predict three-
and four-particle diffusion using KS. Other constant parameters are
u�=1 and L /u�=1.

kN /k1 t� � �0 /� �

185 0.031 0.03398 0.25, 1, 4, 5.92, 0

16, 32, 64, 92.5 0

1000 0.01 0.006286 0.25, 32, 500 0

1000 0.01 0.006286 0.25 1

1000 0.01 0.006286 0.25 5

1000 0.01 0.006286 0.25 20

2000 0.0063 0.003143 0.25, 1, 4, 32, 64, 1000 0

FIG. 3. Time evolution of the triangle size for kN /k1=185 and
different triangle initial sizes from bottom to top �0 /�=0.25, 1, 4,
16, 32, 64, and 92.5.
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shown by the line with a 1/2 slope in Fig. 3. Khan et al.
noticed the same behavior in a two-dimensional KS.

The evolutions of �w� and �I2� as functions of the normal-
ized time tu� /L for different initial sizes �0 /� are shown
respectively in Figs. 4 and 5. The evolution of ��� for the
same cases is shown in Fig. 6. Where 0��0�0.5L1, all
these quantities decrease rapidly owing to the strong shape
distortion of the triangle towards a minimum value. This
minimum value is an increasing function of the initial size.
The maximum shape distortion is observed for �0 /�=0.25 at
tu� /L�2. When the initial triangle size becomes comparable
to the largest length scale L1 ��0�0.5L1�, we find that �w�,
�I2�, and ��� decrease directly from their initial values to
their asymptotic values without passing through a minimum
value.

At large times tu� /L
15 the three points eventually lose
memory of their initial separations and all curves for all ini-
tial sizes approach the same asymptotic value, which is 0.66
for �w�, 0.16 for �I2�, and 0.26 for ���. This value of �I2�asy

corresponds to a Gaussian distribution of �1 and �2 which
leads to a Gaussian distribution of �I2�. For three-
dimensional turbulent flows �I2�Gau=1/6 �5�.

The time at which the distributions of the shape parameter
relax to the asymptotic value is shown to be dependent on
the initial triangle size. At a given initial triangle size, if one

of the particles disperses faster than the others, the triangle is
elongated and the time needed for the triangle to have a
uniform distribution depends on how the other particles will
separate. The two particles with initially small separation
will stay together for a longer time until separation takes
place and as a result the time needed for the triangle to have
a uniform distribution increases.

From these results, KSs are found to satisfactorily predict
the evolution of three-particle diffusion in homogeneous iso-
tropic three-dimensional turbulent flows. The results are in
full agreement with DNS results in Ref. �5� for three-
dimensional turbulence and experimental results for two-
dimensional turbulence �7�.

B. Larger inertial ranges

We now consider larger inertial ranges �kN /k1� to investi-
gate how the size and shape of a three-particle cluster evolve
at higher Reynolds numbers. Computations are done for dif-
ferent inertial ranges kN /k1, namely 185, 1000, and 2000 and
for different initial triangle sizes.

Figure 7 shows the evolution of �w� as a function of tu� /L
for kN /k1=2000 and different triangle initial sizes �0 /�
=0.25, 1, 4, 32, 64, and 1000. If we compare the results with
those for kN /k1=185 in Fig. 4, it looks as if �w� depended on
both �0 /� and kN /k1. By contrast, Fig. 8 shows the same

FIG. 4. Time evolution of �w� for kN /k1=185 and different tri-
angle initial sizes from bottom to top: �0 /�=0.25, 1, 4, 16, 32, 64,
and 92.5.

FIG. 5. Time evolution of �I2� for kN /k1=185 and different tri-
angle initial sizes from bottom to top: �0 /�=0.25, 1, 4, 16, 32, 64,
and 92.5.

FIG. 6. Time evolution of ��� for kN /k1=185 and different tri-
angle initial sizes �0 /�=0.25, 1, 4, 16, 32, 64, and 92.5.

FIG. 7. Time evolution of �w� for kN /k1=2000 and different
triangle initial sizes from bottom to top �0 /�=0.25, 1, 4, 32, 64,
and 1000.
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evolution of �w� but this time for different inertial subranges
kN /k1=185, 1000, and 2000, and a given �0 /L1. In this case
�w� is independent of kN /k1. This result was observed for all
ratio �0 /L1, so in fact �w� is not a function of kN /k1 but a
function of �0 /L1:

�w� = Fw��0/L1,tu�/L� . �19�

Or, provided that �0 /L1 is kept constant, �w� as a function of
tu� /L does not depend on kN /k1 that is on the Reynolds
number.

The same result is shown in Figs. 9 and 10 for ���:

��� = F���0/L1,tu�/L� �20�

does not depend on kN /k1 and for �I2� in Figs. 11 and 12:

�I2� = FI��0/L1,tu�/L� �21�

is also independent of kN /k1.
Pumir et al. �5� concluded that their results did not depend

qualitatively on the Reynolds number in the range 21�R�

�82. We can extend this range to the higher limit kN /k1
=2000 which corresponds to R�=400. These results are to be

related to the findings of Ref. �11�. In this paper, similar
results were found for the fractal dimension of a volume
evolving in a turbulent flow, namely that

Dv = 3 − C
L

�0
� tu�

L
�1/3

, �22�

where Dv is the fractal dimension of what was initially a
volume, �0 is its initial characteristic scale, and C a constant.
Equation �22� also is independent of the ratio kN /k1, that is of
the Reynolds number, but is a function of �0 /L. What mat-
ters in the building up of the fractal dimension is the scales
present inside the volume that is the ratio L /�0. Here, we can
reach the same conclusion for I2, w, and �, their evolution is
controlled by L /�0 that is the range of turbulent scales the
initial triangle encompasses and not by the inertial range
ratio kN /k1.

Figures 7, 12, and 9 show the evolution of �w�, �I2�, and
��� as functions of tu� /L for kN /k1=2000 for different initial
triangle sizes �0, namely �0 /�=0.25, 1, 4, 32, 64, and 1000.
The dependence of these parameters on the initial triangles
sizes is shown to be weaker than that for small Reynolds
numbers. That is not in contradiction with the previous state-

FIG. 8. Time evolution of �w� for different inertial subranges
kN /k1=185, 1000, and 2000, and �0 /L1=0.032.

FIG. 9. Time evolution of ��� for kN /k1=2000 and different
triangle initial sizes �0 /�=0.25 ���, 1 ���, 4 ���, 32 ���, 64 ���,
and 1000 ���.

FIG. 10. Time evolution of ��� for different inertial subranges
kN /k1=185, 1000, and 2000, and �0 /L1=0.032.

FIG. 11. Time evolution of �I2� kN /k1=2000 and different tri-
angle initial sizes, from bottom to top �0 /L1=0.032, 1, 4, 32, 64,
1000.
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ment that they are independent of kN /k1. In our KS, k1 is
fixed so increasing kN /k1 means increasing kN as

�0

L
�

�0

�

k1

kN
,

comparing cases where kN /k1 is increasing at constant �0 /�
is actually comparing cases where �0 /L is decreasing.

In contrast, with KS results for two-dimensional turbulent
flows �12�, all values of the parameters describing the tri-
angle shape evolution approach an asymptotic value, which
is the Gaussian value. Similarly to what is found at kN /k1
=185, when the initial triangle size becomes comparable to
the largest length scale L, �0�0.5L1 �as can be seen in the
case �0=1000��, we find that the parameters describing the
shape’s change decrease from their initial values to their final
asymptotic values, directly, without decreasing to an inter-
mediary minimum, as it is the case for smaller initial triangle
sizes namely �0�0.5L1. So, we can conclude that if the
initial triangle size is in the inertial range but much larger
than the Kolmogorov microscale, the shape distortion be-
comes very small. This would be because a triangle with an
initial size large enough may not be affected by the small-
scale fluctuations of the turbulent field. Such a triangle will
contain all the scales of turbulence from the beginning so its
evolution does not depend on �0 /L anymore.

C. Effect of the unsteadiness term on three-particle diffusion

Figure 13 shows the evolution of the triangle size �R2�1/2

as a function of tu� /L for kN /k1=1000, �0 /�=0.25, and dif-
ferent unsteadiness parameters �=0, 1, 5, and 20 defined by
the first method �a� and the second method �b�. It can be seen
that provided that 0
�
1, there is no effect of � on the
evolution of the triangle size for times smaller than 7 tu� /L
when using the first method, and at all times when using the
second method.

The evolutions of the shape-based parameters �I2�, �w�,
and ��� are shown in Figs. 14–16, respectively, for the same
cases used in Fig. 13. When using the second method, vary-
ing � for 0–20 affects �I2� and �W� by less than 10%. When
using the first method, this is only true for �� �0,1�. With
this method, larger values of � change significantly �I2� and

�w� at times t /u�L�10. This mainly affects the time at
which these two triangle shape parameters relax to their
asymptotic values. This time is significantly decreased with
the increase of � when using the first method. This can be
attributed to the following: as the value of � increases the
flapping of the velocity field increases, the particles decorre-
late from each other more rapidly, and the triangle forgets its
initial conditions faster. For 0
�
1 defined by either meth-
ods, the asymptotic value of �I2� is the same as the Gaussian
value predicted at �=0 but further increase � �i.e., �
1�
will result in departures from the Gaussian value though by
less than 10%.

As can be seen from Fig. 16, ��� is more sensitive to the
value taken by �, though here as well the second method is
much more robust. Provided �� �0,1� the error on the time
at which the minimum is reached is again within 10% as is
the error on the asymptotic value.

So we can conclude that the second method is rather ro-
bust and results are safe provided �� �0,1�. This result was
already known for two-particle statistics, so studying three-
particle objects does not add constraint on the modeling of
the unsteadiness parameter.

D. Lagrangian autocorrelations for three particles

Figure 17 shows the Lagrangian autocorrelation function
of the triangle’s size Rc that is

FIG. 12. Time evolution of �I2� for different inertial subranges
kN /k1=185, 1000, and 2000 and �0 /L1=0.032.

FIG. 13. Time evolution of the triangle size �R2�1/2 for kN /k1

=1000, �0 /�=0.25, and different unsteadiness parameters �=0, 1,
5, and 20 defined by �a� the first method and �b� the second method.
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Rc =
�R�t,��R�t,0��

�R�t,0�2�
, �23�

for different times in Richardson’s range �20�, namely
tu� /L=2.5, 3, 3.5, 4, 4.5, and 5. All curves collapse indicat-
ing that the evolution of the radius of gyration is self-similar
in time. The dashed straight line indicates that the radius of
gyration remembers about 0.65 of its history. This value is
larger than the value obtained for two-particle diffusion
�0.56� indicating that for this parameter a three-particle clus-
ter has a longer memory than a two-particle cluster. The
self-similarity observed on the radius of gyration is much
less obvious on the autocorrelation function of the parameter
�w�. As shown in Fig. 18, the correlation increases with
tu� /L, the triangle remembers more of its previous shape
when tu� /L increases as indicated by the the two dashed
straight lines corresponding respectively to tu� /L=2.5 and 5.

V. FOUR-PARTICLE RESULTS

A. Comparison with low Reynolds number DNS

In this section, we follow the tetrahedron of Fig. 2. We are
interested in the evolution of the tetrahedral volume �V�
which measures the tetrahedron’s size growth and �I2� which
measures its shape’s change. We first compare our findings
with Pumir et al.’s �5� who used DNS to study the evolution

of tetrahedrons for a relatively moderate Reynolds number
R�=82 or kN /k1=185.

The evolution of �I2� as a function of tu� /L for kN /k1

=185 and different initial sizes �0 /�, namely �0=0.25�, �,
4�, 16�, 32�, and 64� is shown in Fig. 19. �I2� is found to
decrease rapidly due to the strong shape distortion of the
tetrahedron towards a minimum value. This minimum value
is an increasing function of the initial size �0. The maximum
shape distortion is observed for �0 /�=0.25 at tu� /L�2.

At large times, tu� /L
15, all the curves corresponding to
different initial sizes approach the asymptotic value

�I2�� = 0.215

which corresponds to a Gaussian distribution of �I2�. The
exact Gaussian value for a three-dimensional turbulent flow
is �I2�Gau=0.222 corresponding to a Gaussian distribution of
�1, �2, and �3 �5�.

It can also be noticed that as the initial triangle size in-
creases, the shape’s distortion becomes smaller. So that when
the initial tetrahedron size becomes comparable to the largest
length scale L1 ��0�0.5L1�, �I2� eventually decreases from
its initial value to its asymptotic value monotonically without

FIG. 14. Time evolution of �I2� for kN /k1=1000, �0 /�=0.25,
and different unsteadiness parameters �=0, 1, 5, and 20 defined by
�a� the first method and �b� the second method.

FIG. 15. Time evolution of �w� for kN /k1=1000, �0 /�=0.25,
and different unsteadiness parameters �=0, 1, 5, and 20 defined by
�a� the first method and �b� the second method.
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reaching a local minimum, in contrast to what is observed for
smaller initial tetrahedron sizes ��0�0.5L1�. All these re-
sults are similar to those observed for a triangle.

Figure 20 shows the evolution of the tetrahedron’s volume
�V� as a function of time for different initial sizes, namely
�0=0.25�, �, 4�, 16�, 32�, and 64�. At short times, the
volume is conserved due to incompressibility. Once inertial

scales are reached, the contribution of small-scale fluctua-
tions becomes important enough to affect the dynamics of
the tetrahedral volume. The volume deviates from the linear
volume-preserving map that it followed in the dissipative
range and the average volume begins to increase �5�. In the
inertial range, Richardson’s scaling ��V����3/2t9/2 seems to
be only valid at �0=� as indicated by the straight line. The
volume increase follows that trend until very large times
�tu� /L
10� when the increase saturates onto a t3 law as
indicated by the dashed straight line. This later regime cor-
responds to the random walk regime when two particles be-
come independent and their distance becomes proportional to
t.

B. Results for larger Reynolds numbers

From the previous results, KSs are found to satisfactorily
predict most features of the four-particle diffusion in isotro-
pic three-dimensional turbulence in comparison with the re-
sults obtained with DNS from Ref. �5�. So we will now
consider larger inertial subranges to show the role of large
Reynolds numbers on the four-particle diffusion.

FIG. 16. Time evolution of ��� for kN /k1=1000, �0 /�=0.25,
and different unsteadiness parameters �=0, 1, 5, and 20 defined by
�a� the first method and �b� the second method.

FIG. 17. �Color online� Lagrangian correlation function of the
triangle size for �0 /�=0.25 and different times in Richardson’s
regime: tu� /L=2.5 ���, 3 ���, 3.5 ���, 4 ���, 4.5 ���, and 5 ���.

FIG. 18. Lagrangian correlation function of the parameter �w�
for �0 /�=0.25 and different times in Richardson’s range tu� /L
=2.5 ���, 3 ���, 3.5 ���, 4 ���, 4.5 ���, and 5 ���.

FIG. 19. Evolution of �I2� as a function of tu� /L for kN /k1

=185 and different initial tetrahedron sizes, namely from bottom to
top �0 /�=0.25, 1, 4, 16, 32, and 64.
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Figure 21 shows the evolution of �I2� as a function of
tu� /L for different inertial subranges, kN /k1=185, 1000, and
2000 and an initial tetrahedron’s size �0 /L1=0.032. With
�0 /L1 fixed, all the curves collapse for all Reynolds num-
bers. The same result is observed for 0.032
�0 /L1
0.5.
Figure 22 shows the evolution of �V� as a function of tu� /L
for the different inertial ranges that were considered in Fig.
21, the figure shows that there is no effect of the Reynolds
number on �V� for a fixed �0 /L1. Pumir et al. concluded that
results do not depend qualitatively on the Reynolds number
in the range 21�R��82. We can extend this range to a
higher limit kN /k1=2000 which corresponds to R�=400. We
can also extend the interpretation we gave for triangles to
tetrahedrons: what matters in the building up of �I2�, �w�, and
�V� is the scales present inside the volume, that is the ratio
L /�0. Their time evolution is controlled by L /�0, that is the
range of turbulent scales the initial tetrahedron encompasses,
not by the Reynolds number.

Figure 23 shows the evolution of �I2� as a function of
tu� /L for kN /k1=2000 and for different initial triangle sizes
��0�, namely �0 /�=0.25, 1, 4, 16, 64, and 1000. The depen-
dence of �I2� on the initial tetrahedron’s size is shown to be

weaker than the one observed for small Reynolds numbers
�Fig. 19�. For large times, �I2� approaches an asymptotic
value, which is the Gaussian value. Similarly to what was
found for kN /k1=185, when the initial tetrahedron’s size be-
comes comparable to the largest length scale L1 �i.e., �0
�0.5L1, as seen in the case �0=1000��, we find that �I2�
decreases directly from its initial value to its asymptotic
value without reaching a local minimum in contrast with
what can be seen for triangles of smaller initial sizes ��0

�0.5L1�. So, we can conclude that if the initial tetrahedron’s
size is in the inertial range but much larger than the Kolmog-
orov microscale, the distortion in shape becomes very small.
This would be because tetrahedrons with large enough initial
sizes may not be affected by the small scale fluctuations of
the turbulent field. These results are similar to those found
for the triangle and are underlain by the same explanations.

Figure 24 shows the evolution of �V� as a function of
tu� /L for kN /k1=2000 and different initial tetrahedron sizes,
namely �0 /�=0.25, 1, 4, 16, 64, and 1000. In this type of
representation, Richardson’ s scaling seems to be only valid
for �0=4�.

C. Effect of the unsteadiness term

Figure 25 shows the evolution of �I2� as a function of
tu� /L for kN /k1=1000, �0 /�=0.25, and different unsteadi-

FIG. 20. Evolution of �V� as a function of tu� /L for kN /k1

=185 and different initial tetrahedron sizes, namely from bottom to
top �0 /�=0.25, 1, 4, 16, 32, and 64.

FIG. 21. Evolution of �I2� as a function of tu� /L at different
inertial subranges kN /k1=185, 1000, and 2000 for tetrahedrons of
initial sizes of �0 /L1=0.032.

FIG. 22. Evolution of �V� as a function of tu� /L at different
inertial subranges kN /k1=185, 1000, and 2000 for small inertial
tetrahedron sizes of �0 /L1=0.032.

FIG. 23. Evolution of �I2� as a function of tu� /L for kN /k1

=2000 and for different initial tetrahedron sizes ��0�, namely from
bottom to top �0 /�=0.25, 1, 4, 16, 64, and 1000.
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ness parameters �=0, 1, and 5 defined by the first method �a�
and the second method �b�. The conclusions are very similar
to those drawn for the triangle. With the second method there
is less than 10% discrepancy whatever the value for �. With
the first method there is less than 10% discrepancy provided
that �� �0,1�. For 0���1 defined by either method the
asymptotic value of �I2� is the same as the Gaussian value

��0.222�. When �=5 the asymptotic value becomes smaller
than its corresponding Gaussian value.

Figure 26 shows the evolution of the tetrahedron’s volume
�V� as a function of tu� /L for kN /k1=1000, �0 /�=0.25, and
different unsteadiness parameters �=0, 1, and 5 defined by
the first method �a� and the second method �b�. The figure
shows that there is no effect of � on the evolution of the
tetrahedral volume when time is less than 7tu� /L when the
first method is used, and at all times when the second method
is used provided that 0���1.

VI. CONCLUSIONS

We studied the evolution of three- and four-particle diffu-
sion at large Reynolds numbers using kinematic simulation
in isotropic turbulence. We found that

�i� KS is able to predict the evolution of three- and four-
particle diffusion in isotropic turbulent flows. The results ob-
tained are in a very good agreement with those obtained
using DNS in Ref. �5� for moderate Reynolds numbers.

�ii� The evolution of the triangle �respectively tetrahe-
dron� depends on whether the value of the triangle size
�R2�1/2 �respectively tetrahedron volume �V�� lies in the Ri-
chardson range. If it does, there is a nontrivial shape distor-
tion. If �R2�1/2 �respectively �V�1/3� is larger than the largest
length scale, then the shape of the triangle �respectively tet-

FIG. 24. Evolution of �V� as a function of tu� /L for kN /k1

=2000 and for different initial tetrahedron sizes, namely �0 /�
=0.25, 1, 4, 16, 64, and 1000.

FIG. 25. Evolution of �I2� as a function of tu� /L for kN /k1

=1000, �0 /�=0.25, and different unsteadiness parameters �=0, 1,
and 5 defined by the first method �a� and the second method �b�.

FIG. 26. Evolution of �V� as a function of tu� /L for kN /k1

=1000, �0 /�=0.25, and different unsteadiness parameters �=0, 1,
and 5 defined by the first method �a� and the second method �b�.
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rahedron� relaxes to an asymptotic value corresponding to a
Gaussian distribution of the eigenvalues �i.

�iii� The evolution of �W�, ���, �I2� for three and four
particles and �V� for four particles as a function of u�t /L
does not depend on the Reynolds number but only on the
ratio �0 /L1, that is on the portion of the inertial range that is
contained within the initial triangle or tetrahedron. We ex-
tend these results discussed in Ref. �5� for small Reynolds
numbers to the higher limit kN /k1=2000 corresponding to
R�=400.

�iv� There is no effect of � when 0
�
1 on the evolu-
tion of the triangle radius of gyration and tetrahedral volume
for times less than 7tu� /L if � is defined by the first method,
and at any time if � is defined by the second method. The

second method of modeling the unsteadiness parameter
seems very robust and has no dependence on � whenever
�� �0,1�.

�v� The evolution of the radius of gyration of the triangle
is shown to be self-similar in time. This self-similarity ob-
served on the radius of gyration is not so well observed on
the Lagrangian correlation function of the parameter �w� de-
scribing the geometry change evolution.
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